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SUMMARY

This study is devoted to a comparative analysis of three "Adaptive ZOOM"

(ZOom Overlapping Multi-level) methods based on similar concepts of

hierarchical multigrid local refinement : L.D.C. (Local Defect Correction),

F.A.C. (Fast Adaptive Composite), and F.I.C. (Flux Interface Correction),

which we proposed recently. These methods are tested on two examples of a

bidimensional elliptic problem. We compare, for V-cycle procedures, the

asymptotic evolution of the global error evaluated by discrete norms, the

corresponding local errors, and the convergence rates of these algorithms.

INTRODUCTION

The need for local resolution in physical models occurs frequently in

practice. Special local features of the operator coefficients, source terms,

and boundary conditions can demand resolution in restricted regions of the

domain that is much finer than the required global resolution. The multigrid

methods with local mesh refinement provide one solution method to achieve

efficient local resolution by solving problems on various locally nested
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grids, and by using these grids as a basis for fast solution and correction on

the global basic grid of the calculation domain. Different techniques have

been proposedin the literature, suchas the pioneering works [1,2,3,4,5].
Therefore, the concept of "Computational Adaptive Zoom" in the context of

a "Graphical and Computational Architecture" has been introduced in the field
of numerical simulation in order to take the best advantage of the new

capabilities of high performance computer architectures [6]. It can be viewed

as a generation made automatically (i.e. in an adaptive way) or not, of some
multilevel hierarchical local nested zoom grids (ZG), overlapped all over the

global basic grid (BG). These grids may move all over the entire computation
domain _ during the solution phase. This concept is supposed to allow both

local refinement and global correction of the basic grid solution by a
successive transfer of information between the connected grids (BG) and (ZG).

So it is well adapted to a graphical vision of Zoom in terms of the creation

of local graphical windows where it is needed in the problem (strong

gradients, discontinuities, singularities,...), but in an active sense, i.e.,

the basic grid solution is modified and improved as the computing is

performed. This has involved us in the creation of an original engineering

software package called "AQUILON", still currently in development [6].

In addition, this strategy offers other interests. The goal is to combine

the best features of both multigrid techniques and domain decomposition

methods (in the case of overlapping grids) to provide an acceleration of the

convergence rate and a good suitability for implementation on parallel

computers, thus reducing the ellapse time. Moreover, another advantage is the

possibilty to solve different differential problems on the grids (BG) and

(ZG), which allows us to optimize both the physical and the numerical model.

This can be particularly interesting for the approach of solving problems by

"imbedding inside fictitious domains" associated with appropriate "control

terms" for expressing the boundary conditions, as proposed in [6]. It is also

possible to adopt different kinds of discretization on each grid. Thereby, the

multigrid zoom _ methods share with the domain decomposition techniques the

opportunity for obtaining precise solutions by combining solutions to problems

posed on physical subdomains, or, more generally, by combining solutions to

appropriately constructed continuous and discrete boundary value sub-problems.

From the numerical point of view, the strategy adopted enables us to work

only on structured and uniform meshes for each grid separately, on which a

moderate number of degrees of freedom is required. On each grid, a "simple and
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inexpensive" discretization is performed, leading to the same simple form of

sparse pattern matrices (e.g. 2D block-tridiagonal). We aim at avoiding
solving problems on unstructured or nonuniform composite meshes, which tends

to introduce inaccuracies in the discretization, slowness in the solvers, and

being surely more expensive in terms of implementation, data structures

storage and CPU time. Our choice is expected to be relatively good in terms of
duality quality/cost of computationfor a lot of casesof moderatecomplexity.

MULTIGRID ZOOM ALGORITHMS

Different ZOOM algorithms will be examined and compared. We consider

first the L.D.C. (Local Defect Correction) algorithm proposed by Hackbush [1];

we choose for the restriction operator a 2D bilinear interpolation one of type

"full weighting control volume". The second one belongs to the class of F.A.C.

(Fast Adaptive Composite Grid) methods from McCormick [5], for which the

analogy with the B.E.P.S. method [4] can be noticed. We use here the "delayed

correction" version of F.A.C. Only the third one, the F.I.C. (Flux Interface

Correction) algorithm that we proposed more recently [7], will be briefly

described hereafter.

All these Multigrid Zoom Algorithms are based on the same general

principle : a successive transfer of information level by level, leading to

the global correction of the initial discrete solution on each grid, and thus

on the global basic grid (BG). The multilevel implementation is made in a

recursive way as in the usual multigrid techniques (V-Cycles, W-Cycles, etc .)

[1,3]. The resolution on each grid may be performed "exactly" or by using an

inexact solve (e.g. a few iterations of a smoothing procedure).

Notations and Definitions

Consider the following second order non-linear elliptic boundary value

problem defined on f2 a bounded, open domain in _d, for d = 2 or 3 :

(p) ,( L(u)- div(q_(u)) + G(u) = f(x) x _ _ (1)
t

well-posed boundary conditions on F = _f2 symbolically called by (BC)

The equation (1) L(u) - f is so expressed by splitting the nonlinear

operator L(u) in the divergent part where cp(u) has the physical meaning of the

flux density of the solution u= u(x) and the nonconservative one G = G(u). The

relation between the solution u and the flux cp can take the general vector
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form q0(u) = F(u) in many systems of conservation laws, but applications will

concern an advection-diffusion equation or a Navier-Stokes problem. For the

experiments here, (P) is a diffusion problem and we have q_(u) = -o.gradu .

In order not to have too many formal requirements and restrictions, we

assume explicitly only that this equation (1) has at least one isolated

solution u* in the space L/(f_). All other assumptions are implicitly contained

in the following considerations.

The basic notations will be those classically used in the multigrid
lit

framework [1]. We denote by e the current index of the grid level (0_< e < e),

e = 0 is the level of the global basic grid (BG) which discretizes the entire

calculation domain f_, and e = e* e0 is the level of the most nested and finest

zoom giid (ZG). Each grid of level e can be characterized by •

I--I

Iwl

IPl

I--t

I--I --I

)--I t--1

|-- I I--L

-- !--I1---I

--

t--II

) --II

---1

-theopen domain f2 e ={0}

onwh   canUethe boundary

defined the unit out side normal vector n e

the closure Fie = f2e U F e

the mesh size h e

Each grid of level e is divided into a set of control volumes //x

associated to the nodes x e l"$e We denote by Fe,e+ 1 the interface between two

successive grids of level e and 6+1 and we have Ve, f_e n f2e+l_e _. The

successive mesh sizes will be taken as he+ 1 = h e / 2 p, P _ IN*. The following

notations will also be used • A e = _qe+l n f_e and _'e = Fie+l n f2 e .

The transfer operators between the grids e and e+l will be called,

e for the restriction operator and by p_+I for therespectively, by Re+ 1

prolongation operator. For all three algorithms, we have chosen pe+l-e as •

pe+l . Fe n _ee ,6+1 ___ Fe+l\ (Fe+ 1 n F)

which is a monodimenSional linear interpolation operator defined on the

interface of the grids _ and e+l. Each value ue+ 1 at a node y e Ft?+IX(Fe+I n F)

on the interface is obtained by a linear interpolation of the values u/_ at the

two neighbour nodes x et x' belonging to (F_,e+ 1 n FI b ), and thus verifying

U_+l (y) = ue(x) if y = x .

278



If we denote by L_ ue = f_ the discretized equation of (1) on the grid of

level _ , we can define the following discrete boundary value problems on _ •

(500) 0 (50e) on F_ n F _e0

on F ° • (BC) on F_ \ (F e n F) • u/_ = Pe-1 U&l (2)

We denote by u ek the discrete solutionk obtained., onkthe grid _ at the k-th

iteration of the zoom algorithm, and e_ = u_ - ue the associated discrete

error, where u e is the natural restriction of the exact solution u of problem

(50)on r e.
For 0 < e < C, ?(e)will represent the number of iterations of the zoom

algorithm on the grid level e in order to describe a whole cycle • if we have

"f(e)=l (respectively 7(e)=2), V0< e <e', then V-cycles (respectively W-cycles)

will be described. We have 3t(C) = 1, and 7(0) is the total number of cycles

performed from the basic grid (BG) in order to obtain the so-called

convergence of the zoom algorithm. When e*=l (i.e. for a two-grid algorithm),

only V-cycles are of course carried out. The term "No Zoom" will be used for

the resolution by "an exact solve" of problem (5° ) on the basic grid (BG) of

mesh size h° (e*=0, k=0). The term "Zoom" will be used to indicate that some

iterations of a multilevel zoom algorithm have been performed: _*_-0, l<_k<"t,(0).

Description of The Multilevel F.I.C. Algorithm

The main idea of the two-grid FIC method for levels e and g+l is to give

the opportunity to apply the local "flux residual" correction due to the whole

patch level e+l, at each node x _ N"e on the grid level e. This is obtained

through the expression of the local flux balance (i.e. integration) of eq.(1)

over the volume Vx = 1/x _ _+1' between the grid levels g, on one hand, and

e+l on the other hand.

Because of the consistency of the conservative discretization of the

fluxes by the finite volume method, which must be respected on each grid, the

outside normal fluxes of q0(u) through an interface of two neighbour control

volumes are opposite. By giving more importance to the local "flux residual",

that leads to consider for the correction step on the grid level g, the local

flux of the defect only at each node of a boundary zone Ie,_+ 1 defined as the

"flux correction interface". We can choose for Ie,_+ 1, either the stripe A÷=

{u V x , x _ _'e = Fe,_+l _ f2e}' or A (see further Figure) if we want the
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boundary bA to correspond to interfaces between control volumes on the grid

level _ • we will have V = V in the latter case. We define on the grid level
X X

e, 0Vx = Fx u F,r Vx _ I_ = I_,_+ 1 n f2_ , where Fx= _Vx n _N'_ _ 0, or

respectively, Fx= OV x c_ 0Ag , (mes (F x) = h e ).

X .

m_F _I

c.:.. )7 :

Fg,_+l

_X ,.,-.. _

n_+ 1

We then propose the following restriction operator on the outside normal

flux through the "interface boundary" YI,I+I = {_ Fx ' x e Ie} •

Re+l " Y_,I+I _ I'$e+l _ I_,_+1 _ f2e

R_+l(q_+l(u)'n_+l)(X) - rues(F) F g_+l(u)'n_+ld7 V× _ I_,_+ 1 _ _ (3)
X X

We can then define, as in [7], the local "flux residual" correction at

each node x e I_ = I_,_+ 1 _ f2 e on the grid level _ by •

c0(_,x)(u) { _ }re((P)(x) = e(e,x) Re+l((Pe+l(U ) .n/?+l ) - (p_(u).ne+ 1 (x) (4)

The control parameter e(e,x), which has the dimension of a length, has

already been encountered in order to assign Neumann and Robin (or Fourier)

boundary conditions in the context of "imbedding inside a fictitious domain"

[6]. Its expression is given by •

mes (V x)

e(_,x) = (5)
mes (F)

X

A complete calculation, still not published, gives a complex expression

for 0_(/_,x)(u), which is the following one in the case under subject of G - 0 •

280



/JF 1 IIF
r r

co(e,x)(u) "_ 1 + (6)

[IFx q)(u)'n dY]e+l /
Fx e

We can then generate the successive iterates u 0

algorithm implemented in a recursive way •

k by the multilevel FIC

0.

Initialization : compute u o

Uo° is obtained by resolution of problem (_o0)
k

Iterations : compute the successive iterates u
0

for k = 1 to 'y(0)do FIC(0)

Composite re-actualization : providing UoY(°) on (BG) by assigning

for e = e* -1 to 0 by step of -1 • u_ (°) (x) = u_ (°)_+1 (x) Vx e A e

Procedure FIC(e)

If e = e* Then solve problem (Y'e*) Else

begin

• 1 st step - resolution on the grid level e+l :

end

- solve problem providing u/_+l

- for k = 1 to y(e+l) do FIC(e+I)

* 2 nd step correction on the grid level e :

solve problem (_'e) with fe = fe + ZI e re(q))

where re(q)) is computed by equations (3) (4)(5)(6)

and ZI e is the characteristic function of I e in_e

Remarks •

1) - In any case, in order to avoid the explicit calculation of e0(/_,x)(u)

by eq.(6), an economical solution is to use an approximate correction for FIC.

In that version, called FIC(CO), only the flux integrals on the interface F
X

will be evaluated by quadrature formulae (Simpson), and an average weighting

factor c0(e) will be determined by a semi-empirical way for each grid level.

Besides, it can play the role of an average relaxation parameter for the

iterative zoom algorithm when _(_)=o3, Ve_:_*.
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2) - In terms of domain decomposition, the two-grid FIC for levels _ and

e+l can be regarded as a full overlapping iterative algorithm that splits the

whole composite problem in two Dirichlet/ Neumann boundary value sub-problems:

the problem on the grid level /_+1 with a Dirichlet boundary condition

on the interface Fe,e+ 1 (2),

the problem on the level e with a condition of relaxed transmission of

the flux on the interface 7e, e+l through (4), which demands the flux

continuity at convergence. That condition can be considered as a Neumann

boundary condition on 7_,_+1 by the technique of "fictitious domain" in [6].

General Comments on the Three Algorithms

i) The two-grid FAC method for levels _ and e+l can be regarded as an

iterative procedure to solve "exactly" the discrete composite problem coming

from an adequate discretization of problem (_o) on the composite grid I'$e

defined by the association of the grids _e and _+1" Therefore, the principle

is to apply a multigrid algorithm between the grids _¢ and Ue on one hand, and

between the grids I'$_ and _e+l on the other [5,4]. There is therefore a

correction phase on both the grid levels _ and _+1 with respect to the

discretization on the composite grid. In that sense, FAC can be viewed as an

"exact" solver for the composite problem. Because the composite grid stencils

agree with the coarse and fine grid stencils, respectively, outside and inside

the refinement region, and because the correction equations are solved

exactly, the composite grid residual is nonzero only at the interface.

ii) Due to the attention needed for the nonuniform discretization of the

problem on the interface zone of the composite grid, FAC method can prove to

be a little difficult to implement in a more than two grids version.

iii) - On the contrary, LDC and FIC methods, which are easier implementing

in the multilevel case, are only approximate solvers • they don't use a

composite grid and neglect the fine grid residual correction. The former

consists in the local correction of the solution defect inside Ae as the

latter involves a local flux residual correction through the interface 7e,e+l.

iv) - Both FAC and FIC methods provide corrections by balancing fluxes

computed from both coarse and fine grids across the interface. They take the

best advantage of a conservative discretization of the equations, for example,

by a finite volume technique.
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NUMERICAL APPLICATIONS

In that context, we propose to compare three types of multigrid zoom

algorithms on two examples of a linear elliptic problem (7,) presenting,

respectively, a discontinuity of the operator coefficients for (7'1) [8], and a

singularity of the exact solution for (7'2) [1] :

L(u) - -div(cr(x).gradu) +ct(x) u = f(x)
(7,) c_, ct >0 e L_(f2) et f • L2(f})

well-posed boundary conditions on F=Of_

in [-2 =]0,1[ X]0,1[ (1')

ca 1 led by (BC)symbol i cally

These problems were already tested successfully on the FIC method in [7].

Problem (7'1) is heterogeneous and defined by f-=0, ct-=0, o'-_--100 inside a disk of

radius 0.1 and o'_--1 outside (Fig.la). A solution computed on a very fine basic

mesh (5122 ) will be used as the reference solution u*. Problem (7'2) is defined

by f-=0, et-=0, o'-_--1 (Fig.lb); the exact solution is u* = In(r) with r= v/x2+ y2.

Numerical Implementation and Procedures

The discretization on each grid, independant of the geometry of the

problem, is made in a conservative way by a finite volume method on a uniform

Cartesian mesh. The classical five-point scheme is used providing a second

order precision. The resolution of the linear systems, which are

block-tridiagonal and symmetric positive definite, is performed by a fast and

efficient solver • a preconditionned conjugate gradient (PCG) method (CG-SSOR)

vectorized by a Red and Black numbering of unknowns. The results for two grids

are obtained by an "exact" solve on each grid. The results for multilevel LDC
,

or FIC (_ > 1) are given for an "inexact" solve on each grid (including

Fig.5b), i.e., a fixed number itcg of iterations of PCG on each grid with •

itcg=2 for h 0 = 1/8 itcg=4 for h 0 = 1/16 itcg=8 for h ° = 1/32

The results are analyzed with different norms (L °°, L 2, L-energy norm) of

the discrete error evaluated on the global basic grid (BG, _=0). We study the

evolution of the relative error norms -u_°= I le_ll / Ilu_ll (No Zoom) andasymptotic
k k

[),<o) = i leY<0)ll / I lull (after 7(0) Zoom iterations) with e = u ° - u ° which"0 0 0 '

allows us to estimate an asymptotic average rate z •
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* for t* = 1, as function of h I or p (for a fixed ho)

1/m

0
x -- , wi th

_Y( o ) (p=m)0

Here m=3 and _0)=2, see Tab.l, Tab.2, and Fig.2a, Fig.3, and Fig.4.

* for [ > 1, as function oft* (for a fixed h o and p=l)

1/m

x _ with m max ,f e

_oY(°) (e'=m)
(

( "}m = max p e

Here m=3 and 7(0)=10, see Tab.3, and Fig.2b.

The convergence rate of LDC, FAC and FIC have been also compared (Tab.4):

* for FAC • we study the variations of the Euclidean norm of the

composite residual lr0K(u)12 for k = 1 to T(0) (Fig.5a), and a convergence rate

9 is calculated by a geometric mean •

[ rY(°)(u)iff].(2 1/(7(0)-1)
p=

I r I (u) I
0

* for LDC or FIC: we study the variations of quantities 8k= ko IlU0

for k = 1 to Y(0) (Fig.5b), and a convergence rate 9 is then estimated by •

u k-1 L2o I

p

By(o) 1/(y(o)- 1)
o

1

80

Comparative Numerical Results

1) - By comparing a no-zoom method and a ZOOM one, we notice that the

error globally decreases ; between two increments of p or e*, it is divided by

an elevated average x-factor of between 1.5 and 3.5 (Tab.l, Tab.2, Tab.3). For

problem (7'2), the decrease is monotonic and there seems to be good analogy

between the variation of the error as a function of p (for t'=l) or of t* (for

p=l), (see Fig.2a and Fig.2b). The influence of the position and dimensions of

the local grids (ZG) becomes negligible as h0 decreases [7]. Due to the choice
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of discretizing on a Cartesian mesh independently of the geometry of the

heterogeneity, the error for problem (5°1) does not decrease monotonically as

already noticed in [7,8].

2) In many cases, the error obtained with zoom is less than computed

without zoom on a single basic grid of,.mesh size h0< hr*. In particular, Fig.4

shows that the local discrete error le_ [ calculated point by point on the

diagonal of the domain (502), by a two-grid FIC method (h0=l/16, hi=h0/2, k=2)

is globally better than the error obtained with No Zoom at the corresponding

nodes of BG (6=0, h0=1/32). The former results are more accurate inside the

refinement region and get closer to the latter case far from the interface. Such

remarks can also be made for the discrete error norms in the other Tables or

Figures. However, the error is not reduced beyond a threshold value consistent

with the order of precision of the discretization schemes on the different

grids (cf, the multigrid defect correction method using Richardson

extrapolation [ 1]).

3) The two-grid FAC and FIC methods yield error results of the same

order of magnitude for both problems. These results are far better than for

LDC for problem (501), where the flux conservation plays an important role. On

the contrary, LDC yields as good results as the others for problem (502), and

sometimes better. However, as LDC does not deal with the interface fluxes, but

only works on the solution inside the open refinement region, it can become

inefficient ('_ = 1) if the refinement region does not contain enough coarse

nodes on which the local defect correction is performed (Tab.l, Tab.2, Tab.3).

4) The results with the version FIC(CO) for 0,1 < co < 0.5 are nearly

similar to those obtained with co*= co(_,x)(u) calculated by (6) (Fig.3). That

could justify the interest of the approximate version FIC(co), and particularly

as a preconditioner of the discrete problem, as suggested in [4].

5) - Because of its exact character, the FAC method yields the far best

convergence rate, a mean value of 0.16, nearly independant of both h 0 and h 1

(Fig.5a and Tab.4). We obtain a mean convergence rate of 0.42 for FIC(co=0.2),

just a little better than LDC with 0.50 These convergence rates remain not

very sensitive to the variations of h 0 and 6" (Fig.5b and Tab.4). However,

those of FIC have a noticeable tendency to become better as the number of grid

levels (or 6") increases (see Tab.4).
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CONCLUSION

Despite its non-exact character, FIC provides as good results as FAC,

concerning the analysis of discrete errors for both the two tested problems.

In particular, FAC and FIC proved to be better than LDC for problems where the

flux conservation locally plays a main role.

FAC yields very good convergence rates (p-0.16), better than LDC (p_0.50)

or FIC (p_0.42), but its multilevel implementation remains more difficult.

However, the use of FIC as a preconditioning technique of the discrete problem

is likely to be very interesting, especially for the approximate version

FIC(¢0) where the factor o3 becomes a relaxation parameter. We are currently

testing such a procedure for Navier-Stokes problems.
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Tab. 1. Problem (7)1) - Two Grid Zoom _(0) = 2 - Discrete L z norm of the error

1/8

1/32

h ZOOM x =0.375 et x2=0.625 ZOOM xt=0.25 eL x2=0.75

h ° NO ZOOM h - o z
z 2 p

FAC w =YZC LI_ FAC FIC0.55 _ = 0.4C

p=1 0.434E-I 0.493E-I 0.210E-I 0.434E-I 0.732E-2 0.639E-2

p=2 0.434E-1 0.790E-1 0.122E-I 0.434E-I 0.133E-I 0, I06E-1

0.434E-I

p=3 0.434E-I 0.330E-1 0.589E-2 0.434E-I 0.289E-2 0.251E-2

1.00 1.10 1.95 1.00 2.47 2.59

p=l 0.689E-2 0.167E-I 0.119E-I 0.739E-2 0.986E-2 0. I06E-1

p=2 I0.689E-2 0.374E-2 0.394E-2 0.297E-2 0.123E-2 0.161E-2

/16 0.689E-2

p=3 !0.689E-2 0.255E-2 0.339E-2 0.214E-2 0,673E-3 0.592E-3
!

T j 1.00 1.39 1.27 1.48 2.17
2.27

p=l O. 136E-l!O.342E-2 0.538E-2 0.244E-2 0.160E-2 0.201E-2

p=2 0.140E-1 0.295E-2 0.412E-2 0.174E-2 0.428E-3 0.392E-3
0.982E-2

p=3 0.134E-1 0.326E-2 0.331E-2 0.153E-2 0.233E-3 0.262E-3

T 0.90 1.44 1.44 1.86 3.48 3.35

1/64 0.192E-2

1/128 0.648E-3

1/256 0.193E-3

Tab. 2. Problem (7)2) - Two Grid Zoom _'(0) = 2 - Discrete L-Energy

h ZOOM xz=0 eL x2=0.25 ZOO14 xt=0 eL x2=0.5

h ° NO ZOOM ]h
t 2p LDC FAC FIC LDC FAC FIC

i _ = 0.20 _ = 0.20

p=t 0.342E-1 0.152E-1 0.168E-1 0.120E-1 0.138E-1 0.139E-1

p=2 0.342E-1 0.817E-2 0.110E-1!O. 441E-2 0.511E-2 0.553E-2

1/8 0.342E-1

p=3 0.342E-I 0.622E-2 0.990E-2 0.221E-2 0.250E-2 0.346E-2

T 1.OO 1.77 1.51 2.49 2.39 2.15

p=l 0.723E-2iO.829E-2!O. 837E-2 0.704E-2 0.818E-2 0.819E-2

p=2 0.270E-2 0.308E-2 0.337E-20.232E-2!O.282E-2 0.285E-2

1/16 0.206E-1

p=3 0.140E-2 0.152E-2 0.215E-2 0.627E-3 0.975E-3 0. I07E-2

T 2.45 2,38 2.12 3.20 2.75 2.68

p=1 0.454E-2 0.527E-2 0.527E-2 0.453E-2 0.526E-2 0.526E-2

p=2 0.150E-2 0.182E-2 0.184E-2 0.149E-2 0.180E-2 0.180E-2

1/32 0.133E-I

p=3 0.407E-3 0.628E-3 0.699E-3 0.38TE-3 0.570E-3 0.577E-3

T 3.20 2.77 2.67 3.25 2.86 2.85

1/64 0.888E-2

1/128 0.607E-2

1/256 0.420E-2

1/512 0.294E-2

norm of the error
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Tab, 3. Problem (?2) - Multilevel Zoom LDC/FIC

= ht/2 0 <- t _- t -i , x_'(0) = 10, h_+ 1 1

Discrete L z norm of the error

= 0 and x
2

h
o

1/8

number ZOOM FIC
ZOOM

NO ZOOM of

• _lds LDC
l = 0 _ - 0.2 _o = 0.35

l = I 0.806E-2 0.869E-2 0.787E-2

_" = 2 I0.440E-2 0.625E-2 0.465E-2
O. 209E- 1

t = 3 0.368E-2 0.606E-2 O. 428E-2

1/16 O. I05E-I

1/32 0.529E-2

1.78 1.51 1.70

l" - 1 0.399E-2 0.404E-2 0.394E-2

6" = 2 0.157E-2 0.199E-2 0.166E-2

_" = 3 0.102E-2 0.165E-2 0.115E-2

T 2.18 1.85 2.09

6" = I 0.186E-2 0.202E-2 0.249E-2

6" = 2 0.969E-3 0.768E-3 0.809E-3

6" = 3 0.7|IE-3 0.416E-3 0.514E-3

T 1.95 2.33 2.18

1/64 0,265E-2

1/128 0.132E-2

1/256 0.662E-3

1/512[ 0.331E-3

= 0.5 -

Tab. 4. Problem (?2) - Multilevel Zoom LDC/FIC - Two Grid Zoom FAC

- - , x I = 0 and x = 0.5 -_'(0) = 10, h_+ I = h_/2 p 0 < _ < _ -i
2

Convergence rate p

1/8

h o

1/16

1/32

number

of

grids

l'=2

t'=l

_u = 3

_° = 1

°
l =2

t =3

ZOOM

LDC

ZOOM FIC

_=0.2

p=l p=l

O. 53 O. 46

O. 45 O. 42

O. 43 O. 34

O. 56 O. 44

O. 49

O. 48

O. 50

O. 51

O.50

O. 42

O. 39

O.47

O. 44

O. 40

ZOOM

FAC

p=l p=2 p=3

0.14 0.15 0.15

0.14 0.16'0.16

0.15 0.17 0,18
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Discrete L-Energy norm of the error
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Fig. 4. Problem (5°2) - Two Grid Zoom with FIG (w = 0.31)
:r(0) = 2, x = 0 and x = 0.5

1 2
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Euclidean norm of:the composite residual (log)
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Fig. 5b.

1,5E-01

1,5E-02

1,5E-03

'-_-- DC D " 0,56 1FIC /b - 0,44

1,5E-04 l = _ L_ l J j .... t.....
1 2 3 4 5 6 7 8 9

Number of V-cycles

I0

Problem (7'2) - Two Grid Zoom with LDC and FIC (w = 0.2)- Convergence rate p
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